If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+31x-144=0
a = 3; b = 31; c = -144;
Δ = b2-4ac
Δ = 312-4·3·(-144)
Δ = 2689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-\sqrt{2689}}{2*3}=\frac{-31-\sqrt{2689}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+\sqrt{2689}}{2*3}=\frac{-31+\sqrt{2689}}{6} $
| r2−2r−17=0 | | 11-x=3x-5(2x-1) | | 152.38=1.5*5.5+x | | 3(n-7)=- | | 152.38=1.5*5.5*x | | X2-10x-11=0 | | 2x^2+8x+3498=78 | | 5(w+1)=-10 | | 6x-12=6x+2 | | 0=-6x(2x+7) | | 2a+6=1 | | 5f=-71 | | x-2(x-2)=3 | | -7c^2+77c=0 | | 30=3/(r-0.04) | | -7c+77c=0 | | 3x-7=1+2x+1 | | 3x+(x+10)+(2x-40)=180 | | 50x=30x+250 | | x=⁴/5 | | 5s+19=144 | | 8.154^-2x=10 | | 4x-11+x=-5 | | 2(b+20)=240= | | 3x-2=-7x+6 | | √x+8=9-6 | | 5(x-2)+(x-5)=4-7 | | 4(m-2)=24= | | 2(x-6)=4(x-3) | | s/3+14=26= | | 11f+7=10-3f | | (x^2)+(1.8*10^-5)x-(3.78*10^-8)=0 |