If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3=22
We move all terms to the left:
3x^2+3-(22)=0
We add all the numbers together, and all the variables
3x^2-19=0
a = 3; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·3·(-19)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{57}}{2*3}=\frac{0-2\sqrt{57}}{6} =-\frac{2\sqrt{57}}{6} =-\frac{\sqrt{57}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{57}}{2*3}=\frac{0+2\sqrt{57}}{6} =\frac{2\sqrt{57}}{6} =\frac{\sqrt{57}}{3} $
| −4(2x+5)+5x−1= −48−48 | | W²-14w+49=0 | | 7n+13=2n+10+9n | | 2n2+4=3 | | 12.4w+3.9=-4.6w-6.3 | | 10+8u=-10+3u | | 2(9x-6)=-7x+28 | | 29=n-15 | | 143=8x+4+7x+4 | | 5y2+10=135 | | 2((12-x)=8(48+x) | | 2m2-5=-17 | | -16=-8n+4n | | 90=2(5b+5) | | 5x+8(5(13+1/3)=40 | | 3•(x-4)-2•(1-2x)=0 | | Z²+12z+36=0 | | 5(8+-1.6y)+8y=40 | | x²+48x-2=0 | | 4(2x-8)-(3x+7)=5(2x+1)-14 | | 3x−1=2x+39 | | 70=5x+8+7x+2 | | c+5/8=-9/16 | | -4x+11=5=6(-x+3) | | 7(−4x−5)=6x+2 | | -9-6c=5c+11-c | | 0.60x-6=14 | | Z2+12z+36=0 | | 67-25x=350 | | 9x^2-61x+26=0 | | 15-k=-19+k | | -6+8k=-46 |