If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3x-310=0
a = 3; b = 3; c = -310;
Δ = b2-4ac
Δ = 32-4·3·(-310)
Δ = 3729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{3729}}{2*3}=\frac{-3-\sqrt{3729}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{3729}}{2*3}=\frac{-3+\sqrt{3729}}{6} $
| 19-28=2w-3w | | n+50/93=22/33 | | .4(2+x)=32 | | 1/10x^2+2=82 | | 8s+3=40 | | r+16=32 | | 2^4x=1/32 | | -243=-7w-4(9+4w) | | z+18=14 | | 4-3y/6=4 | | -1+8b=143 | | -4j=44 | | -w+44=221 | | 464/49x^2-127=337 | | 157-u=223 | | 12x=36=60 | | 130=277-u | | 7y−13≤-2y+12=y | | 0.8(3x+1/4)=3(0.7x-5)+10.1 | | 4.9y-3.3y+5.3y-4.2=168 | | 150x^2-450=0 | | 6(1−3d)2(7d+6)=d. | | 9(6x+3)=-10 | | (3x+9)+2=12 | | 2x2-15=84 | | 2t^2+30=0 | | –9v=–10v−6 | | –3w+5=–4w | | 4x–6x+8=10 | | 3^3c=9 | | -8(5x-4)=15 | | 6x=2(10+x) |