If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3x-4=0
a = 3; b = 3; c = -4;
Δ = b2-4ac
Δ = 32-4·3·(-4)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{57}}{2*3}=\frac{-3-\sqrt{57}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{57}}{2*3}=\frac{-3+\sqrt{57}}{6} $
| 9=d9 | | 6y=24+12 | | 11n=45 | | x+2=53x+6=15 | | 15(15)=x(x+16) | | (7y+2)(6y+7)=0 | | 2.80n=42 | | (3x)x=40 | | 2.80n=30 | | (x-43)+(2x-18)+(x-39)=180 | | 1/6x=17 | | 2b^2-13b+20=0 | | 9(x+5)=3(x-23) | | 7+3x-2=4x | | 5x+3(x÷4)=28 | | 90=3x(5)/(3)-6 | | (x-4)/(x+4)=2/9 | | 0.4(b)=12 | | 3p-6=5p | | 4/4x=9/4 | | (x+4)(x+4+3x)=152 | | 5d-12=7d | | 7(x-3)=2x-2 | | 12=22-5d | | (-7x)+(-6)+(-23x)=180 | | 5x+10=x+48 | | 2=z/9-3 | | 4/3q+8=12 | | 3x-23+90=180 | | (5x+1)+(14x)+(4x-5)=180 | | 1/3c+10=12 | | 5+4x-5x=9 |