If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3x-8=0
a = 3; b = 3; c = -8;
Δ = b2-4ac
Δ = 32-4·3·(-8)
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{105}}{2*3}=\frac{-3-\sqrt{105}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{105}}{2*3}=\frac{-3+\sqrt{105}}{6} $
| 33=4a=7 | | 2x-8+x=79 | | (-7h)+1=(-4h-8) | | 0.25x3.14x9= | | 3g-1.3=1.79 | | 3x+4/4-3(2x-3)=8.5-3x | | t–5=12 | | -9(x-9)=3(x+57) | | 2x*2^(x-1)*2^(x+1)=64 | | 12x-6=84 | | 12x-6=60 | | A=6x+-35 | | m+2.6/2=2.2 | | 11x+12=22 | | 0.15a=850 | | -3(q+8)=-9 | | 5(q-70)=65 | | 10=x+20-30 | | 8x+12=2x^2-12 | | k/7+39=47 | | -3=z-72/5 | | x+4=235 | | y/7-40=-37 | | 4x2+8x-12=0 | | b-948/7=-7 | | 7^x+1=17 | | 12=c÷12 | | (-7h)+1=(-4h-8 | | 12x10=42x10 | | 3+a=14 | | 3+a=14a= | | x-0.16=450 |