If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+40x-675=0
a = 3; b = 40; c = -675;
Δ = b2-4ac
Δ = 402-4·3·(-675)
Δ = 9700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9700}=\sqrt{100*97}=\sqrt{100}*\sqrt{97}=10\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{97}}{2*3}=\frac{-40-10\sqrt{97}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{97}}{2*3}=\frac{-40+10\sqrt{97}}{6} $
| x^{2}=121 | | 0=x^2+1x-1 | | 3r-9=r | | -48=7+5w | | 10x-3=5x-18 | | 16j+10j+(-14j)=12 | | -n+2(n+4)=-1-8n | | 6=5h=6 | | 4(x-3)=2(x-10) | | -13x-13=273 | | -10=r/2 | | 2h+35=106 | | -6r-32=-r-5(r+7) | | 6x+4x-13=27 | | 8x+4x+2x+2+10=180 | | 14+2x=24+7x | | 7(x-2)=5(x-8) | | u-77/3=4 | | 11q=44 | | 8n-6n-n-n+3n=12 | | 7(x-2)-5=(x-8) | | 5x-3+60=9x+13 | | 15=3t+6 | | -8u+5u+(-15)=-6 | | 8(x-4)+6=10 | | -36=2j | | -40+4x=8+8(5x-6) | | 14k-9k=20 | | –4(w−79)=–60 | | a-17=-37 | | 2t-43=t | | x^2-56=24 |