If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-120=0
a = 3; b = 4; c = -120;
Δ = b2-4ac
Δ = 42-4·3·(-120)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{91}}{2*3}=\frac{-4-4\sqrt{91}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{91}}{2*3}=\frac{-4+4\sqrt{91}}{6} $
| 13d+3=11d+17 | | 72+6=y | | .5m+2=3m=3 | | 16=7x^2 | | -7x+6=22 | | 0.5x+72.8=287 | | 5x=4x-6=24 | | Y=3(x+2)^2+7 | | –10+4b=10+2b | | 4y-9=26 | | n-73=19 | | 6=x+1|-2 | | 5-w=-20 | | 2x30+2=60 | | -12+2t=–14 | | −4+a2−=2 | | m+12.97=–14.35 | | 6b+8=116 | | 5k+19=17 | | 4-7=3t-3-5 | | 4(3a+7)+3(2a+5=) | | 19+k=108 | | 10-(d-2)=2(2d+1) | | 3x+15+6x=360 | | 14/15=7/15x | | –12+2t=–14 | | 6 | | h-39=13 | | 3c=2c-6 | | 12.6c=–103.32 | | d =4 | | 7y+7=19y-37+61 |