If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-18=0
a = 3; b = 4; c = -18;
Δ = b2-4ac
Δ = 42-4·3·(-18)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{58}}{2*3}=\frac{-4-2\sqrt{58}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{58}}{2*3}=\frac{-4+2\sqrt{58}}{6} $
| 58=4y-6 | | 4x÷5x-100=6÷7 | | (3v+8)(6-V)=0 | | -2(5x/2+3)=-4x | | 4(2c+1)=19+3c | | 1/3(6/5t-3)=t-4 | | 4.x-5.9=54÷2 | | 5+8/3x=6 | | 5y-2/7y+3=5/y | | 2/3+x/2=1/6 | | -3(1/3x-4)=13 | | 4(v-6)=-6v-14 | | (w+9)²=12 | | -8z+9=-2 | | 8z+10=-5 | | 3/2(3x-1)=6 | | 8*x+32=16 | | -4-17=16y-3(5y+6 | | x+9.72=-21 | | F(x)=2x3-4x-5 | | F(x)=(2x3)(4x-5) | | 16/3=3/c | | 4x²-21x+5=0 | | 13x-2x+5x+85=95 | | 7x-3x=40+16 | | 8x-3x=40+16 | | 11+4x-2x=5 | | 127=45x+37 | | 26=14+2x | | 8x+2x+7x+173=221 | | -28=-8x-10x-10 | | 10x-4-2x=6x+6 |