If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-1900=0
a = 3; b = 4; c = -1900;
Δ = b2-4ac
Δ = 42-4·3·(-1900)
Δ = 22816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22816}=\sqrt{16*1426}=\sqrt{16}*\sqrt{1426}=4\sqrt{1426}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{1426}}{2*3}=\frac{-4-4\sqrt{1426}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{1426}}{2*3}=\frac{-4+4\sqrt{1426}}{6} $
| -5-8x=2x+3 | | 1.5×-3y=6 | | 17h+11=17h+4 | | |2x-1|=9 | | p/9=2.9 | | 15r+18=18+15r | | a/7.9=43.18 | | -10-5z+9z=-10+4z | | 4x-12=16÷8x | | 8+a/15=1+a/6 | | 2x+6+6x=8x+3 | | 3x2+7x-1900=0 | | -6v-9=-9-6v | | 3(x+3)=5x-9 | | -10-4m=-4m-10 | | -4-9s=-9s-7 | | -9p+6=6-9p | | 19-c=12 | | -10c+10=-10c+5 | | X^2-6y+14=0 | | c/9+20=15 | | 8x-1=7+21x | | 8w-9=8w | | y^2-4y-152=0 | | X-y^2=50 | | 7r-8=-8+7r | | (x-20)^2+10=1000 | | -2k=-2k+1 | | –8+4s=16 | | 7q+10=8q | | -48=12-5u | | 5a^2+5=10a |