If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-4=0
a = 3; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·3·(-4)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8}{2*3}=\frac{-12}{6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8}{2*3}=\frac{4}{6} =2/3 $
| 6(3+y)=42 | | 2c-3+8(c-4)=12-c | | 3^x=1.5 | | 5l-2+3(7-l)=82 | | a/4+8=15 | | 6x-30=4x | | .6x-30=4x | | 3x=2x-5(6-4x) | | x2-100=-19 | | (10x)+(2*1.5x)=170 | | x^2+14-16=0 | | 10x+(2(1.5x))=170 | | (10x)+2(1.5x)=170 | | 10x+3x=170 | | 10x+2(1.5x)=170 | | 3*25x=20x+5 | | 3x=+13 | | 2x2+7x/2-30=0 | | 3m−2(m+7)=2m+14 | | 9×=8x+6 | | 2x2+7/2x-30=0 | | 6-(5y+1/3)=-4 | | 10^0.2x=2 | | x=2.8/1.4 | | 10^0,2x=2 | | 8=2a-2 | | x-60+2x-150=180 | | 2x-10+90+30=180 | | |2x+8|+|3x+6|=0 | | 0,5=10^-0,2x | | 2a^2-13a+12=0 | | 2a2-13a+12=0 |