If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-6=0
a = 3; b = 4; c = -6;
Δ = b2-4ac
Δ = 42-4·3·(-6)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*3}=\frac{-4-2\sqrt{22}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*3}=\frac{-4+2\sqrt{22}}{6} $
| Y-4=1.3(x+0) | | 4(3p+2p)-12p^2=2(8p+6) | | 2.2^(x-5)=9.32 | | 18/20x+13=21 | | 9x÷8(2-x)=5 | | 2.2^x-5=9.32 | | 9^3x-7=81^x+2 | | 9x^2+9=585 | | (x^2+2)/3*2=15 | | 2y=6-10 | | (a-8)(a-2)=-8 | | -16a+-2=-35 | | 65=16+2n | | 2x-8=16,12 | | 4x^2=27x-7 | | x=56=50 | | X(x+2)-x(x-6)=10x—12 | | 65=16-2n | | 36p^2+1=10 | | 8⋅w=72 | | 9x|x|+4=8+5x | | 9c^2-18c=0 | | 13.05-8.7x=2x | | 20x-7-18x+3=12x-9-10x+13 | | 4x+8x-63=84-9x | | 15-3y=3(3y+1)-4(3y+1)-4(3y-6) | | Y=0.25x+6.50 | | 4x-48=-24 | | 12x-2x+58=12x+28 | | 4(3+3x)-2=58 | | 12x–3=10x+5 | | 1/5∛3x+10=8 |