If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x=9
We move all terms to the left:
3x^2+4x-(9)=0
a = 3; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·3·(-9)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{31}}{2*3}=\frac{-4-2\sqrt{31}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{31}}{2*3}=\frac{-4+2\sqrt{31}}{6} $
| 7-5/2(8x-6)+2x=32 | | 1/10(y-8)=2/5(y+7)-1/5y | | 8x-28=64 | | 2t+10+-5t=-2 | | y(4+1)+3(2)=8 | | 6/5(k+6)=1/5-k | | -(5x-4)-(6x-5)+10=-8(x-1)-(6x+7)+3 | | 5+4g+8=1(g=-3;g=1;g=2 | | 800+50x=1000+40x | | 5/3(a+2)=4/3-a | | 4x^2-9x+2=5 | | 7(m-15)-4(5m-17)=28 | | -f+2+4f=8-3f-f+2+4f=8-3f | | 10+x+1=2x+4 | | 4/60a+16/60=9/15 | | 1/8(m+3)=5/8-m | | D=8/5(m-17) | | 8=x+3÷5 | | 5/4w+7/3=8/5+1/3w | | 11+x-1=3x-10 | | M-15/4-5m-17/7=1 | | -14r-19=302 | | 5/4h+9/2=4/5+1/4h | | 1.5r+15=2.35r | | 9x18=11x | | X^2+18x+22=0 | | 2x-7+3=x+4 | | 5u-17=63 | | M-22/5-4m-16/6=2 | | 9x+11=3x+-11 | | 7/8m-4=-15/16m+1 | | 6+9=-5(6x-3) |