If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5=29
We move all terms to the left:
3x^2+5-(29)=0
We add all the numbers together, and all the variables
3x^2-24=0
a = 3; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·3·(-24)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*3}=\frac{0-12\sqrt{2}}{6} =-\frac{12\sqrt{2}}{6} =-2\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*3}=\frac{0+12\sqrt{2}}{6} =\frac{12\sqrt{2}}{6} =2\sqrt{2} $
| 3x+30+x=10+2x+x+2 | | X+4x-1=4+15 | | 16−2t=3/2+9 | | 3x(x+15)=0 | | 2t-11t=54 | | 31/2(12-x)=43 | | 2(x+15)-x=46 | | 2(x+7)–34=4x–11x+4(x-1) | | -4n-5=-8n+4 | | (x+120)+26+(2x+34)=180 | | 5^x=5555 | | b-11=-7 | | 81+x^2=225 | | 4(x−3)+12=15−5(x+6) | | 2(3y-6)=-30 | | (x-16)^2=58 | | (x-8)^2=70 | | 25+7x=8(x+4) | | 4x+27=81 | | 1332=x(x+1) | | -x/2-1=-7 | | 7x-15=9x-23 | | 3(v+5)=-3(4v-1)+5v | | 8y+27=17y | | 3(v+5)=-3(4v-1)5+v | | 25+7x=8x+32 | | 2x+(-14)=-2 | | (2x-2)+4(x+1)=50 | | P(x)=x5+64x3 | | 8/3c-2=2/5 | | -4x-x=9 | | 4.48^-2x/9=13 |