If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x+2=0
a = 3; b = 5; c = +2;
Δ = b2-4ac
Δ = 52-4·3·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*3}=\frac{-6}{6} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*3}=\frac{-4}{6} =-2/3 $
| -1a-2-3a+4=-2a | | 2x+1=10x+5 | | 6m-5=-m+11 | | 19=-4+(2/5)x+10 | | 2x+-1)(x+-5)=0 | | -5(x+1)-2(2+x)=2(1-4x) | | -(x+6)+2=12 | | 7/3+2x=140-2x/6 | | 5(x+2)-2(4+x)=3(1+2x) | | 91+x^2=2x^2+6x | | |6+2x|=4 | | 7+(2x-5)=7-9(x-7) | | Z=y-×(×=3) | | 2x^2+4x+177=0 | | |4x+8|+3=11 | | x2^2+4x+177=0 | | 10+2(m-7)=14 | | 2x^2+4=3x^2+5 | | 4(x+-3)=-40 | | (x+7/6)-(3x+9/5)=2 | | -5(x+3)+3(4+x)=-4(-1-2x) | | 4x(x+-3)=-40 | | x^2-2x+89=0 | | 0.5x+0.2=0.7-0.6 | | 5x+35-18x+19=2 | | -19a+8=20-20a | | -2x^2-4x-177=0 | | 8x2-6x-5=0 | | x4–5x2–14=0 | | 7x+3=15-5x | | 5x-3=9x-15 | | 11-2x=4x |