If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-10=0
a = 3; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·3·(-10)
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{145}}{2*3}=\frac{-5-\sqrt{145}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{145}}{2*3}=\frac{-5+\sqrt{145}}{6} $
| 64+x^2=(4√5)^2 | | (10x+23)=180 | | 3x+7x=35+x | | 14y-9y-11=54.15 | | -3.5k-11.4+9.9k=20.6 | | 6(3a-2)+5=57 | | (55-3x)=180 | | 4m-6+3m=2m+10-1 | | e/35=5(e+2) | | 8y-4y-14=65.84 | | r/3r-7r=32 | | 16.5+2b=28.5 | | x*(x+1)=132 | | 132=x(x+1) | | 4^2x+1=8^x+3 | | 24=3m-6 | | 12=23-d | | 7(5-3w)= | | 132=x*(x+1) | | 3=q-7 | | 36-10x=18+8x | | 2(n+1/3)=2/3n+1 | | 5x+29(x-3)=219 | | 10+z=2 | | 16u=8u+56 | | 2(n+1/3=2/3n+1 | | 26=q+23 | | 34+5m=6(4m-7) | | 2x+x-2=x+3 | | 2x/3=3-4x | | (x+6)/7=2-(x+6/3) | | 5(6+r)=35 |