If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-12=0
a = 3; b = 5; c = -12;
Δ = b2-4ac
Δ = 52-4·3·(-12)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-13}{2*3}=\frac{-18}{6} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+13}{2*3}=\frac{8}{6} =1+1/3 $
| 8(1/4x+3/4)-3=-7 | | y+6y+13=0 | | X-2/x+3=x+1/x+9 | | -20=q-28 | | -2(3-x)+10=5(4x-6)-2(x-1) | | -4(x-4)=-5(x-6) | | 0=x2-11x+18 | | x+(x-5)=50 | | 4x-2|3=2x|5 | | 91=-7v | | 32/5m=11/3 | | 6(7-m)+m=46-m | | (4x+1)-(-x-3=(6x+1)+(x-7) | | t-79=-28 | | -3x+(30)=6 | | 8x=292 | | 700+16x=424+22x | | 5(3+5k)=-185 | | 7(x=3)=7(x-4) | | -4.04=k+15.8 | | b+9.46=11.26 | | 2/3x-1/3=3x+4 | | 6x+5-x=-5(x+3) | | n/21=21 | | 8(x+2)=2x-8 | | c+136=668 | | 7x-6/3=-x+6/4 | | 8(x+2=2x-8 | | -2/3x+3=1/5x+11 | | 6x+18x-8=6(4x+4) | | h-16=218 | | 23y+5=17 |