If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-182=0
a = 3; b = 5; c = -182;
Δ = b2-4ac
Δ = 52-4·3·(-182)
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2209}=47$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-47}{2*3}=\frac{-52}{6} =-8+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+47}{2*3}=\frac{42}{6} =7 $
| -5/8g=-12 | | 12-(5a+4)=13 | | 3(3m-2)=2(3m+5) | | X/6-3x+86=x | | 3-4(x+2)=5x+4 | | X/6-3x/5=x-86 | | 16-3p=3/2p+5 | | 0.1x+2.7x=9.3-1.9+2.6x | | -4+2y=2y–6+y | | 3x-5=x-10+5 | | 5-9.8x=0 | | (x/2)-(7/6)=(x/3)+1 | | 6(4z+2)=3(8z+40 | | 2x-8=x+( | | (3*5)t+(21-22)=15t+3^2 | | 40+5x-4.9x^2=0 | | 0=40+5(t)+1/2(-9.8)t^2 | | 7y+1.8=4y-3.2 | | 5x-1+7x=20-2x-7 | | 3(x+6)(x+6)=60 | | x²+6x-55=0 | | 1/4(3x+16)+x/4=9 | | 39=4-7x | | (-8e)=24 | | 6(v-9)=-84 | | (9x+4)/x^2+5=0 | | 3z-4/2=2 | | 3m=7-4m | | 2/3x=1/2-x | | 3x4=-1x16 | | 4=3(n−5)−8 | | 3z+37=13+8z |