3x2+5x-20=16+x-x2

Simple and best practice solution for 3x2+5x-20=16+x-x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2+5x-20=16+x-x2 equation:



3x^2+5x-20=16+x-x2
We move all terms to the left:
3x^2+5x-20-(16+x-x2)=0
We add all the numbers together, and all the variables
3x^2-(+x-1x^2+16)+5x-20=0
We get rid of parentheses
3x^2+1x^2-x+5x-16-20=0
We add all the numbers together, and all the variables
4x^2+4x-36=0
a = 4; b = 4; c = -36;
Δ = b2-4ac
Δ = 42-4·4·(-36)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{37}}{2*4}=\frac{-4-4\sqrt{37}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{37}}{2*4}=\frac{-4+4\sqrt{37}}{8} $

See similar equations:

| (1/2x)-2(x-1)=2-(3/2x) | | 8y-8=-6y-4 | | 3x+5x-20=16+x-x | | 0.2x+0.25=0.5(x+5) | | 4x-13/x=3/8 | | 3y+39=-2y-4 | | -y/5=-55 | | 15=3y+7.y | | -6x-174=51+3x | | 5c+16.3=13.5+10c | | -116=4;1+6x) | | F(x)=12x-5 | | 0.8(p-2)=2-p | | 14=10x-3x | | x^2-12=-87 | | -14=2n-7+7 | | c=12-6 | | X-12=5x+7 | | 12=-3(x-4) | | -40+8x=11x+14 | | 16u-7u=18 | | −31=−4y-3 | | 13,5x-500000=0 | | 5x^2-60x+50050=0 | | 18u=2u-8 | | 25+x=196 | | -4n-4+4=-4 | | 3z/7-1=1 | | y=23-52.9 | | -6(1)/(2)-3=x | | 0.3t+6=36 | |  2y–4=3y–5 |

Equations solver categories