If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-6=0
a = 3; b = 5; c = -6;
Δ = b2-4ac
Δ = 52-4·3·(-6)
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{97}}{2*3}=\frac{-5-\sqrt{97}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{97}}{2*3}=\frac{-5+\sqrt{97}}{6} $
| x+1.16=-4.34 | | x2-10x+3=0 | | 2/5b+6=16 | | 4t+3=12 | | 1/r^2-3r-40*r^2-2r-80/r-10=0 | | 7+6(6v-8)=-6v+1 | | 64^2+225^2=c | | 6n-4=3n+24,n | | 0.51x=6.3 | | 0=(15-4.9t)t | | 64^2+225^2=a | | v=-6 | | 99=-2x-3+4-5x | | 9y=11y | | 13+5y=2 | | -48=8v | | (4x+38)=180 | | x+58+68=180 | | -9/5-5/6w=-5/2 | | 16(x+1)-8x=8(x+1)+8 | | -9.8=-2.3+y/3 | | 14=u/10.24+6 | | −1−5ℎ=14−1−5h=14 | | 6+7n=-7(-2-n) | | -1.2+4v=24.4 | | r^2-4r-4=0 | | u/5+4.4=-8.1 | | .51x=6.3 | | 3(x-4)=5(x-6)+32 | | -q=11 | | -6.36=y/6+9 | | x+(.07x)=604.84 |