If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x+1=0
a = 3; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·3·1
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{6}}{2*3}=\frac{-6-2\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{6}}{2*3}=\frac{-6+2\sqrt{6}}{6} $
| 8x-11x-19=0 | | 9(k-4)-7k=32-2(k=8) | | X+x+3+2x-5=70 | | 3v-8=-13+4v | | 4x–9=16 | | -n-3(1-4n)=-3 | | 7(x-99)-4(x+44)=99-8(x-44) | | -6m-1=-16-2m | | 4(14+x)+-3(-1x+14)=-28 | | 3x²–4x=0 | | -910+170k=-383 | | 9w+15=6(w+6) | | -36+88a=78 | | -6+8x=x+5x | | 1-6n=-5-3n | | d=16×(12.5)^2 | | 94=4u+14 | | -2x/7=3x/11 | | x^2-4x-37=-5 | | 5m+7=3m+10 | | 4y(y-2)=2 | | 54=2a+a/4 | | 25=x-(x*0.15) | | 18x+3x+6x=30 | | 12=c11 | | -5.2+x-3x=18 | | -39-9n=33 | | 12y-9y-7=44.48 | | 10x+5=3x+12= | | 5+x-10+x=-1 | | -81=-1-1(x+2) | | 8x/2=20×2 |