If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-105=0
a = 3; b = 6; c = -105;
Δ = b2-4ac
Δ = 62-4·3·(-105)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-36}{2*3}=\frac{-42}{6} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+36}{2*3}=\frac{30}{6} =5 $
| 2(2a-4)=32 | | .5x=92 | | 14q-6q=16 | | -u/4=39 | | 20(3)(2x)+16=40 | | 4(w+14)=2(4-4w) | | +9-1=2a | | -12+8x-16+6x-16+16=0 | | 5(3x-4=-29+8x | | 4(-6d+17)=-2-19d | | =3x-1119+2x | | 49=g+194 | | 2x+29=13x+7x | | -(x-5)^2=-900 | | 2681x-19x+912x=2 | | -1x+(-2)=-8.7 | | 3h=7(2-3/7)h)-10 | | H=3+75t-16(t*t) | | 71.00=120.00(15.00+x+7.50 | | 4x+3(2x-4)-5x=13 | | (x-5)^2=900 | | q-3=17 | | 2t+9=14 | | 30=5(6n+) | | 4(5x-2)=29x+3 | | 2z+18=2z-5 | | 8-6k=6(1+3k) | | x+32=3x+20 | | (x-5)¨2=900 | | 14z-1=-5z-9(-4z-15) | | 70+3y=115 | | j-15=-11 |