If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-2=0
a = 3; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·3·(-2)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*3}=\frac{-6-2\sqrt{15}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*3}=\frac{-6+2\sqrt{15}}{6} $
| 10=4r-10 | | 5-(8v+5)=4(1+3v) | | P=6(2x) | | 50+3t=3t-7 | | -0.06y+0.12(7000-y)=0.07y | | 10=5y-10 | | -24=5(2c-6) | | 0.25(8-6x+12)=0 | | -7n+14=-6n-8 | | Y=5x^2-60x+166 | | Y=5x^2-60x+16 | | 3x-63=15 | | 4m+3=-25 | | 5=50f | | 40=10-8v | | (1/15x-1/2)=(1/5x-3/10) | | 7s+2+8=-12 | | 10^-x=7^4x | | 42=4k | | y2-8y+9=0 | | (7/x)-3=(1/x) | | 5h+6-9=-22 | | 2(x+2)=-15 | | -40-(-45)=x/8 | | 4b2-25b=21 | | -40-(-45=x/8 | | 6x^2-4=4 | | 6(x+5)+12x=5.70 | | v2+7v+12=0 | | 0.125x=1 | | 2(3c-1)-3=3c+4 | | g-(-9.3)=24.8 |