If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-42=0
a = 3; b = 6; c = -42;
Δ = b2-4ac
Δ = 62-4·3·(-42)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{15}}{2*3}=\frac{-6-6\sqrt{15}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{15}}{2*3}=\frac{-6+6\sqrt{15}}{6} $
| 128-(6x+13)=6(x+4)+x | | -2x+1/3=-2/5x=6/5 | | 5^x=75 | | √3x-2=5 | | -29=5(2q | | 7a+9=4a+1 | | 12x+1=5x | | 4^x=1/128 | | 12×5=x | | 4/10+5/10t=2/10 | | 0.5x+1.25=0.167x-0.5 | | 1x/7-1=9/7 | | 4x^2+22x+18=0 | | N=250/100x2 | | 2+9=3x+2 | | 1+b/3=5 | | 0.5x+1.25=(0.16666666666667)x-0.5 | | 10d-6=4d-14-3d | | -2+n=4n+8(n-3) | | X+3×1=x | | 49/c+10=17 | | 2m6−24m5+64m4=0 | | (4b+7)=-3 | | (6n+3)=9 | | 20-2x=11+7x | | 4=1/7x=9 | | (3x-1)=5 | | 54/b=6 | | 4(r+3)=10 | | 3(2b+1-7=50 | | 11c-8=-22+8c | | 4a-3(a-2)=2(3a-) |