If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+78x+147=0
a = 3; b = 78; c = +147;
Δ = b2-4ac
Δ = 782-4·3·147
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-12\sqrt{30}}{2*3}=\frac{-78-12\sqrt{30}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+12\sqrt{30}}{2*3}=\frac{-78+12\sqrt{30}}{6} $
| 45=x+45 | | 6(4-3k)=42 | | 5n+34=-2(17-7n | | 2÷3b+5=20b | | 9k-21-18k+8=5-2k+2 | | 10f=1.6666666 | | -4=3(x)-0.9 | | x^2+10x-4=-x^2+3x | | 7/8w=1/2w=3/4w | | x+x+25+65=180 | | 5(-2-7x)=-185 | | 8=2x+11 | | (5x-3)=(3x+37) | | 1.5(x)-3=1.5 | | 1/3(x+5)=5/6 | | 2{x-2}=10x | | -15x-64=7x=152 | | -4(9+3x)=48 | | 2-12-p=8 | | (1/2)x=x-4 | | (-3)x=x3 | | -24=-7y+5(y-6) | | 9(-4)-7y=5(3y-2) | | (-3)x=x2 | | 6v+9=7v-8 | | (4/5)x=x-2 | | -1/2y-6/7=-3/5 | | -1/4=3(x-1) | | 7/12y-3=24y-20 | | (9/10)x=x-1 | | 15/1-i=0 | | 6/x+6/9=-3 |