If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-11=0
a = 3; b = 7; c = -11;
Δ = b2-4ac
Δ = 72-4·3·(-11)
Δ = 181
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{181}}{2*3}=\frac{-7-\sqrt{181}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{181}}{2*3}=\frac{-7+\sqrt{181}}{6} $
| 76=3x+7(x-2) | | 3(x-2)+10=x+8 | | -43y+80=-9 | | 0=0.25x^2-0.5x-8 | | 3d=4d+9 | | 3d=4d=9 | | -3(2x-4)-7=8 | | 3x−8=6x−2 | | -5=-11+5x | | 3z/7+6=5 | | 39x=624 | | 12+2/x+25=38 | | 2(2)-y=12 | | 3(x+7)=x+27 | | 2-3y=29 | | 16.4n-12.65=17.2n-6.97 | | 1/4z-7=2 | | (X+120)=(24-5x) | | (8-x)-(5x+1)=0 | | 1/2(x-16)+5=x-11 | | 2(a-8)+7=5(2a+2)-3a-19 | | 6(m^2)+24m+18=0 | | 0=-16t^2+160t+25 | | 7x−2=4x−5 | | 4x-2(5x+7)=35 | | 2x+10=5x+34 | | x+5/7=3 | | -3(x^2-14x+47)+2=0 | | (6x-1/x+3)=2x+1 | | x-11=16-4x | | -16-15g=-13g+20 | | 1/a+1/a-2=2/a+1 |