If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-13=0
a = 3; b = 7; c = -13;
Δ = b2-4ac
Δ = 72-4·3·(-13)
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{205}}{2*3}=\frac{-7-\sqrt{205}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{205}}{2*3}=\frac{-7+\sqrt{205}}{6} $
| 6=-6+2w | | 3{x+4}=5x | | 6+8x=5x2 | | 3(4x+6)=2(6x+9 | | 14a-64=4a+13 | | -2x+11+5x=4+x+7 | | 65=75c-7 | | 6+17u=-15+14 | | -3.1-3x=7.7 | | 7(2+2y)=42 | | 6(3.14)-w=4(3.14) | | -388=17-5z | | Y=-8x-20 | | 8(x-9)=24 | | 5(2+y)=35 | | -66=6(a-5) | | 5(1+4m)=2(3+10m | | 11n-8=4n+48 | | +9030k+80=20k= | | -2.5-4x=10.3 | | y=-1(20)+20 | | -4=3x-26/5 | | y/11+2=-16 | | 3w=6+w | | 0.75(x+20)=0.5(x-2) | | 2=x/7-7 | | 8y+3=40 | | y/11+2=-6 | | 3x+5x+x=3-2x | | 39+8+4g=79 | | d=54+7 | | 2(x-5)+4=16 |