If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-5=0
a = 3; b = 7; c = -5;
Δ = b2-4ac
Δ = 72-4·3·(-5)
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{109}}{2*3}=\frac{-7-\sqrt{109}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{109}}{2*3}=\frac{-7+\sqrt{109}}{6} $
| 4(x-5)=2(2x-5) | | 3x+40=7x+12 | | 18=-6+7x-3x | | 4x+x+5=3+3-1+5x | | 0.8x+6=6.8 | | 6(-2x+9)=5(4x-2) | | b=7-9 | | 4x+x-5=3+3-1+5x | | -4k-5k=18 | | x-400=42 | | 1/2x-5=-42 | | 70+x=94 | | 22=+2(x+8) | | X+15y=31 | | 10w=19+3w=6(9+w)-14 | | 5x-68=8(x-4) | | 8x+(5x-6-4x+1)=x-(x-4 | | 3x-28+5x=6-9x | | 4x+3/3=18 | | 30z-15=15 | | -x+3-8=3 | | -2(x+3)+5+1=19 | | t-8+8=65+65 | | 48x=1104 | | (c+5)/2=31 | | 14+5=-5-6(-3x+15)=5 | | -11+2x+2x^=0 | | 30=10+3/4x | | 3^x-7=8 | | -9z+8/2=31 | | 8r+10=7r+13 | | 6n-13+6=0 |