If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-6=0
a = 3; b = 7; c = -6;
Δ = b2-4ac
Δ = 72-4·3·(-6)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-11}{2*3}=\frac{-18}{6} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+11}{2*3}=\frac{4}{6} =2/3 $
| 3(2x+5)+2x=-9 | | -4(4x-3)=-16x-12 | | 3(4x+8)=-34+22 | | 20+19d=-8+5d+16d | | c-3+ -14= -10 | | 2x+5x-6=3x+10 | | 13x-2x-8=8x-1 | | -3(x–7)+2=20-3(x-7)+2=20 | | 120=6x-4(-4x+3) | | -14.9=-2.1+u/8 | | 15x-9=7x+6-2x | | x2-14x-48=0 | | 63=9(2-d) | | 1a−4=47a−3 | | -3(x–7)+2=20 | | p8=384 | | 17x-2=7x=8 | | -5x-2(4x-28)=-61 | | x2-8x+7=0 | | n/9=5/17 | | p/32=12/8 | | 17(x–2)=-34 | | 2(3x-2)+6=-8+x | | 20=-6d+8d | | 6s=20+8s | | -2(b-7)=-(1-3b) | | (3x+1)+(2x+1)=x+1 | | 8(3x+5=2x-4 | | a/9=5/17 | | 12(b-7)=-(1-3b) | | 825/2=x/1.5 | | q-10-4q=-4q-3 |