If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-8=0
a = 3; b = 7; c = -8;
Δ = b2-4ac
Δ = 72-4·3·(-8)
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{145}}{2*3}=\frac{-7-\sqrt{145}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{145}}{2*3}=\frac{-7+\sqrt{145}}{6} $
| x+.25x=430 | | 4x^2+24x+14=-6 | | x+.25x=161430 | | 5x-6=5(x-1)+8 | | -1=-37+4.8f | | 44(3x-2)=180 | | 7x-7=13x+5 | | 9=-2-2x | | 2/x=3/11 | | 4(2x+3)-3x=2(x+6)+3x | | 3(7x+1)=-12 | | 12+5b=62 | | x+.25x=52 | | 4(x+8)=2(16+2x) | | c/12-11=4 | | 51+x+x+82+51=180 | | X-10+5x-22=90 | | v/7+63=68 | | 0.05x40=2 | | 2(x+4)+5=5(x-3)+10 | | .05x40=2 | | 1/5x-7=2/10x+6 | | -3(-7-b)=1/3(b+39 | | 33h=28h | | .05x40= | | 50+90+x+46=180 | | 8(x+3)-15=2(4x+6)+1 | | x5−8=−13 | | 2.2360679775*2.2360679775=x | | 50+90+x+34=180 | | x+.3x=125 | | 1-2x=6+4x |