If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x-30=0
a = 3; b = 1; c = -30;
Δ = b2-4ac
Δ = 12-4·3·(-30)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*3}=\frac{-20}{6} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*3}=\frac{18}{6} =3 $
| 1.67*0.25=x | | 1/x+1/30=1/12 | | x+13=5+2x | | 1/12=1/30+1/x | | (0.167*100)*0.25=x | | 2(3u+7)=-(3-2u) | | t=5-(3^2+1)+2 | | (3/18)=x | | -x/5+(-32)=-12 | | 90+0.6x=30+0.8x | | ((3/18)*100)=x | | ((3/18)*100)*0.25=x | | 2+x-3x=14 | | -0.10(130)+0.95x=0.05(-8+x) | | 2.5x-7.5=1.5x | | 14x-12=180 | | 2x+5x=24-5 | | 3t2−28t=−9 | | 5x+42=120 | | 6=1/2a | | (0.0303*100)*0.2=x | | 3.7b=8.1b-19.4 | | 3(2x+6)-3x=38 | | 2x+6/10-3x=14 | | X=6+.25x | | (1/33)=x | | 7x-2(3x+15)=-23 | | ((1/33)*100)=x | | ((1/33)*100)*0.2=x | | (7x=6)/3-9=-12 | | x/0.2=-113 | | y(5y-7)=6 |