If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x=10
We move all terms to the left:
3x^2+x-(10)=0
a = 3; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·3·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*3}=\frac{-12}{6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*3}=\frac{10}{6} =1+2/3 $
| (-y)^2=X+4 | | 13x=0/ | | 3y=3y/2+15 | | 10x=3+0.3 | | 4s-s-3=18 | | 3/4x-5/4=1/4 | | -3=2(4)+y | | (x+3)3/2=8 | | 8x-8=6x+40 | | (3x-3.5)=25 | | 4=1.024^t | | -2(t-4)=-2 | | 5f2+8f–8=0 | | 35+6x=42 | | 7x-72=32-3x | | 7^(x^2-32x)=49^(2x) | | 10x=3.3 | | (3x-3.5)=180 | | .24x=40.8 | | 4+3(x-7)=17 | | 3+4-14=15-5d-4d | | 4c=3c/4+39 | | 4=11-22/x | | x(x+9)=-20 | | 21/6+x=-1/3 | | 4(2x-5)=42 | | 6x+7(x-9)=28 | | 36−4x^2=0. | | V=4r.r= | | 5+7j=8j | | 3s+s+s+35=175 | | |3x+5|=|4-x| |