3x2-10/4=56

Simple and best practice solution for 3x2-10/4=56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2-10/4=56 equation:



3x^2-10/4=56
We move all terms to the left:
3x^2-10/4-(56)=0
determiningTheFunctionDomain 3x^2-56-10/4=0
We multiply all the terms by the denominator
3x^2*4-10-56*4=0
We add all the numbers together, and all the variables
3x^2*4-234=0
Wy multiply elements
12x^2-234=0
a = 12; b = 0; c = -234;
Δ = b2-4ac
Δ = 02-4·12·(-234)
Δ = 11232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11232}=\sqrt{144*78}=\sqrt{144}*\sqrt{78}=12\sqrt{78}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{78}}{2*12}=\frac{0-12\sqrt{78}}{24} =-\frac{12\sqrt{78}}{24} =-\frac{\sqrt{78}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{78}}{2*12}=\frac{0+12\sqrt{78}}{24} =\frac{12\sqrt{78}}{24} =\frac{\sqrt{78}}{2} $

See similar equations:

| 11-3x=5x-5 | | -40=-10x-10 | | 5^x=14 | | -7a+5=-121 | | 22=x/2 | | 2t+29=1805t-7=180 | | 100=0.8x2 | | 5x=28.935 | | 16x+5=140 | | 9x+2=1806x+14=180 | | 3(x-4)=-2x+38 | | (3x+4)+x+6=180 | | 0.9-2.1=0.9=0.2(5-x) | | 5(2.5+1.5y)+6y=-55 | | 4x+2=1805x-8=180 | | (2/y-5)=(3/y+6) | | 7x-10=4x-23 | | 4x-95+90+90+x=360 | | 3a+(a-15)=109 | | (3x+2)+41+23=180 | | x-4/2=-4 | | -2n-4=14 | | -2(5s-2)-4=-3(5s+6)-3 | | 2x-10+x+20+2x-10+x=360 | | -2(2s-6)-12=-3(5s+5)-4 | | x/16+7=8 | | 103=5m+3 | | -9+p/2=7 | | 2w/27=16 | | 8=-n+4 | | 7x-10-9x=3(3x-5) | | -52=8a+4 |

Equations solver categories