3x2-100=333

Simple and best practice solution for 3x2-100=333 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2-100=333 equation:



3x^2-100=333
We move all terms to the left:
3x^2-100-(333)=0
We add all the numbers together, and all the variables
3x^2-433=0
a = 3; b = 0; c = -433;
Δ = b2-4ac
Δ = 02-4·3·(-433)
Δ = 5196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5196}=\sqrt{4*1299}=\sqrt{4}*\sqrt{1299}=2\sqrt{1299}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1299}}{2*3}=\frac{0-2\sqrt{1299}}{6} =-\frac{2\sqrt{1299}}{6} =-\frac{\sqrt{1299}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1299}}{2*3}=\frac{0+2\sqrt{1299}}{6} =\frac{2\sqrt{1299}}{6} =\frac{\sqrt{1299}}{3} $

See similar equations:

| 2x-2=2x-30=180 | | 2x-2=2x-30 | | Y=84-x | | 6y+4(2y-2)=3(2y+4) | | 8x+10=37-x | | 10x-10=9990 | | 81=3x+9 | | 15-4(n2)=27 | | (2x-5)+65=180 | | 3u-15=3u= | | 8x+12=9x=9 | | 5h-6=34 | | 4g+7=27 | | 7y-8=2y-1 | | x+8=4x-3+243 | | C(x)=-10x^2-2500x+1000000 | | x+2x+(x+10=90 | | C=-10x^2-2500x+1000000 | | 4x^2+60x+224=0 | | 8x^2+46x+6=0 | | -20x-5=15(18x+19) | | 6+19x=14(x-6) | | 4/4x^2+22/4x+6=0 | | 4(9x+17)=-14x+18 | | 5(x-4)+3(x-15)=-1 | | 2*(3.14)(7.5)h+2(3.14)(7.5)^2=1202 | | 10x-4=16-7x | | 10(8x+11)+14(15+18x)=-12 | | 20/y=6/3.3 | | 5(7x-13)+15(7x-13)=20 | | 10(5000-x)+15x=60000 | | -43-13=14(35+39x) |

Equations solver categories