If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10=0
a = 3; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·3·(-10)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*3}=\frac{0-2\sqrt{30}}{6} =-\frac{2\sqrt{30}}{6} =-\frac{\sqrt{30}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*3}=\frac{0+2\sqrt{30}}{6} =\frac{2\sqrt{30}}{6} =\frac{\sqrt{30}}{3} $
| t-3t=12 | | 2m2+3=m | | 18v-15v=9 | | 8/3x+7/5=x | | x*2,7=1300 | | c/16=16 | | 10x=+15 | | 6+-2(x)=26+6(x) | | 69.08=(2)(3.14)(r) | | 15x+46=74 | | 6.28=(2)(3.14)(r) | | 3/y+2-7/y-2=8/y^2-4 | | 4x+2=6x2 | | (8a+3)^=0 | | 9r-3r=12 | | 49=37+x | | 18x+4=10x^ | | 18x+4=10x2 | | 2+14a=-8+a | | 12x^2+1x=35 | | 12x+1x=35 | | 8/16/5=20/2x | | xx9=126 | | x-39=80 | | 143+568=x | | c=0.8 | | 8x2=135 | | 4=5w-11 | | 5s+7=27 | | 4x-25-121=0 | | 7=13-2m | | 4q+15=47 |