If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x-25=0
a = 3; b = -10; c = -25;
Δ = b2-4ac
Δ = -102-4·3·(-25)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-20}{2*3}=\frac{-10}{6} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+20}{2*3}=\frac{30}{6} =5 $
| 4x+2=5x−x+4 | | -16n=14-17n | | 2/5t=-7 | | -16n=14–17n | | 25-4f=13 | | 4x=3(x+-1) | | 0=4.9t^2+13t+1 | | -2+10k=98 | | 3=96.6/x | | 13.1r+3.66=-14.32+14.32+11r-13.94 | | W3+3w2-18w=0 | | -23+3d=22 | | 8-3(2x-3)=24-4x | | 12y-4=4y+14 | | 13.1r+3.66=-14.32+11r–13.94 | | 4u-(-2)=18 | | -4+3m=-7 | | 2(5x+14)=14x | | 16+7q=-20+13q | | 25q+.10(q+3)=1.70 | | -8w+17+14w=-3w-19 | | 7y-9=(5y+5) | | b/5+1/6=11 | | .01x+.15=-0.5 | | -8w+17+14w=-3w–19 | | 5x+20=32x2 | | 5x-4+101+33=180 | | r+(8)=7 | | 3x+4=78-x | | 3+x=25/6 | | 5x^2-12=7x | | 7-4h=-7-2h |