If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x-8=0
a = 3; b = -10; c = -8;
Δ = b2-4ac
Δ = -102-4·3·(-8)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-14}{2*3}=\frac{-4}{6} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+14}{2*3}=\frac{24}{6} =4 $
| 7-(2x-3)=-70 | | 8x+10=9x+16 | | 14x+168=14x | | 2x+8=70 | | (X+20)=(3x-40) | | 2s-s+5s=6 | | 9x=8+0.25x | | 4r2+9r=28 | | 12x^2-48x+21=0 | | 2w^2(4w-1)=w(1-4w) | | 2(3x+15) =70-4x | | 10x=-2x+12 | | 45n^2+45n=0 | | 525=850x | | -6+4(-x-1)=10 | | 16h-4h-2h+h+h=16 | | 4x+10+9x=90 | | -9(8=9x) | | -5x^2-5x-85=0 | | 17a=41;a | | (k-9)/4=12 | | 2(20)+8x=176 | | -9(8+9x=) | | 9y+41=5(y+1) | | B+2b=3 | | 53x+1/2=27(1/2+2x) | | 7x-8×=1 | | -6(x-13)=-84 | | (k-6)/3=10 | | 12x-288.5=8x-193.5 | | 950=16w-(-54) | | 2p+4.5;p=5.1 |