If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-12x-21x=84
We move all terms to the left:
3x^2-12x-21x-(84)=0
We add all the numbers together, and all the variables
3x^2-33x-84=0
a = 3; b = -33; c = -84;
Δ = b2-4ac
Δ = -332-4·3·(-84)
Δ = 2097
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2097}=\sqrt{9*233}=\sqrt{9}*\sqrt{233}=3\sqrt{233}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-3\sqrt{233}}{2*3}=\frac{33-3\sqrt{233}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+3\sqrt{233}}{2*3}=\frac{33+3\sqrt{233}}{6} $
| 13x+5=4x+23 | | -7-6q+1=10-4q | | 18x+8=9x+44 | | 3(b+1)=36+3 | | -4x-5=-6 | | 13x+7=8x+57 | | 3c^2-12c-8=0 | | -152=n+170 | | 10x=550x | | 2x-15=3x-60 | | 17x-3=8x+78 | | (z+4)−6=−2z+8 | | -1+3u=9+5u | | 11x+4=6x-16 | | 13x-8=7x+34 | | p+-597=-760 | | -5+2g=9+6g-2g | | 4p≥=16 | | 13x-8=6x+27 | | P^2+16p-66=0 | | 4p≥=16- | | 4x-4(4)=4 | | 20x-4=10x+26 | | 10x+10=4x+52 | | 3d-10=10+5d | | -14p=-54 | | 22/5=3/8+h | | 11x+7=8x+37 | | 14x-4=5x+59 | | m+100=825 | | (y+7)(y-2)=y | | 6x-6=3x-33 |