If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-13=0
a = 3; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·3·(-13)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*3}=\frac{0-2\sqrt{39}}{6} =-\frac{2\sqrt{39}}{6} =-\frac{\sqrt{39}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*3}=\frac{0+2\sqrt{39}}{6} =\frac{2\sqrt{39}}{6} =\frac{\sqrt{39}}{3} $
| -3(8x-3)+7x=-93 | | (x+10)+2+x=90 | | 10x+(5x-17)+(7x+1)=180 | | D(t)=-200(t)+9000 | | (3a-2)/5a=1 | | 10x-20=9x-20 | | -(1+3n)-8n=87 | | 4u+36=180 | | 9x-(x-5)=-(6-x)-3 | | -5.7=a+2.5 | | m-85=191 | | h+11/12=120.5 | | 88=-8+8p | | 7=-16+d | | 9x-12=11x-8 | | Y+3=4x+20 | | 5=3n+10 | | (12x+9)+(62-3x)+(16x+2)=180 | | (x-4/9)(-2/3)=4/5 | | 2^x-5=512 | | 6.4-2.2x=-35.4 | | 9n+6n=17 | | -6(3x-2)=-6x | | -5(2-p)=6+3(p-2) | | 45/16x=0 | | 63=3n+7(n-2) | | L=13x-3 | | (2/3)t+(13/5)=(22/3) | | -133=-19v | | 8(1+2t)= | | c+79/4=-5 | | 4b+44=180 |