If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-14x+9=0
a = 3; b = -14; c = +9;
Δ = b2-4ac
Δ = -142-4·3·9
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{22}}{2*3}=\frac{14-2\sqrt{22}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{22}}{2*3}=\frac{14+2\sqrt{22}}{6} $
| x.3x=192 | | -(7x+1)=10-6x | | 5x+1=29+x | | 5x+1=29+ | | 34/34b-87.72=1.36 | | 1/4m-1=8 | | 2×+7=3x+4 | | 8x+5/7=5/7 | | 10=-17x+9 | | 18w+14=7 | | 6/5=36/c | | 2^t×2^5=8 | | 128=1x | | ∠2=3x+17° | | 1/38x=20 | | 0.5^x=0.903 | | 4/d+2=8 | | -178=-5x+(-4x-13) | | 10^x=50x | | w+2/2-5=w-1/3 | | k2=289 | | c2=256 | | m2=361 | | m3=361 | | z2=225 | | v2=169 | | 2,2y-1=11 | | X=96x+7 | | 18u-52=9(4u+5)-6(3u-10) | | j/5=375 | | 17(3d-4)+100=66 | | 40/1897s-10.26=1440 |