If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-15=0
a = 3; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·3·(-15)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*3}=\frac{0-6\sqrt{5}}{6} =-\frac{6\sqrt{5}}{6} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*3}=\frac{0+6\sqrt{5}}{6} =\frac{6\sqrt{5}}{6} =\sqrt{5} $
| 7*(x-4)=5⋅(x-2) | | 8c+9/5=3 | | 2=6+60t-16t^2 | | 15-(42/b)=8 | | 2x+x=21+x | | -3(2x-6)+6=-6x+24 | | 2/3x+25=3/4 | | 20x=12x+80000 | | 8x-4=8(x-2) | | 3x*x-6x=45 | | 7y+4(y-5)=(y+2)-5 | | 3x²-6x=45 | | 6x2/3+5=3/48x2/3+25=3/4 | | -5(3t-3)+9t=7t-4 | | 8X+23=5x+14 | | 2x2+20x-400=0 | | X2+11x=-30 | | 3y-8=4y-5 | | 5x2+11x+2=0 | | 31-2+x=3x | | 5x2-10x=120 | | 7y+1=8y-2y | | 6y+2y=7y-9 | | 8x^2-6x=8 | | X+12=18x-6 | | -4-5x=8-(4x-3) | | 9+(-14)=7x-5-6x | | -2x+6+3x=-2+21 | | X+8/2x=5 | | -3(m-20=12 | | 18-(6x-4)=(-2x-5)+25 | | y+4.8=-9.9-4.6 |