3x2-15x=4(x+2x2)-13

Simple and best practice solution for 3x2-15x=4(x+2x2)-13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2-15x=4(x+2x2)-13 equation:



3x^2-15x=4(x+2x^2)-13
We move all terms to the left:
3x^2-15x-(4(x+2x^2)-13)=0
We calculate terms in parentheses: -(4(x+2x^2)-13), so:
4(x+2x^2)-13
We multiply parentheses
8x^2+4x-13
Back to the equation:
-(8x^2+4x-13)
We add all the numbers together, and all the variables
3x^2-15x-(8x^2+4x-13)=0
We get rid of parentheses
3x^2-8x^2-15x-4x+13=0
We add all the numbers together, and all the variables
-5x^2-19x+13=0
a = -5; b = -19; c = +13;
Δ = b2-4ac
Δ = -192-4·(-5)·13
Δ = 621
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{621}=\sqrt{9*69}=\sqrt{9}*\sqrt{69}=3\sqrt{69}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-3\sqrt{69}}{2*-5}=\frac{19-3\sqrt{69}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+3\sqrt{69}}{2*-5}=\frac{19+3\sqrt{69}}{-10} $

See similar equations:

| (4n-3)(2n+2)=0 | | 12.81-11.4k=-15.03-17.2k | | y/4+6=-11 | | 2(n-3)=92 | | 130+31.67a=500 | | X(3x+4)=-1 | | 2(n+3)=92 | | X+96°+5x°=180° | | 5.5+7a=19.5 | | -7x2-8x+9=0 | | 4/9+r=-4/9 | | 3(x-6.3)=5.1 | | 25x+1200=1450 | | 3.1x+7-7.4x=1.5x-6(x-3/2) | | -4+3x-2=2x+1+2x | | (120-2x)(100-2x)=(2x)(x+10) | | 12.5t-7.63=13.7t-4.59+6.56 | | n2=6 | | q-4=40 | | x/72=166.5/37 | | x/72=37/166.5 | | 7.9=2x+7.4 | | (5/3)=(1.06)^x | | 2(-6m-3=6(5m-1) | | -7c+9c-5+3= | | 4f-7f=-31 | | 36/4x+9=-2+8x | | 0.3x+16.4=x-7.33 | | 6.5+0.7x=0.9 | | -4(5x+11)=-2)10x+22) | | 2x+243678766=233452 | | 5x-7=10x* |

Equations solver categories