If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-16x-20=0
a = 3; b = -16; c = -20;
Δ = b2-4ac
Δ = -162-4·3·(-20)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{31}}{2*3}=\frac{16-4\sqrt{31}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{31}}{2*3}=\frac{16+4\sqrt{31}}{6} $
| 6x+84=138 | | 6x+64=138 | | x+1.125x=15,000 | | 3x–15=0 | | 6p+17=33+2p | | 2x=12x+15 | | 18-q=6 | | 4f-7=3f | | 5t^2+16t-12=0 | | 6+3(2x+1)=3x=12 | | x-(90°-x)=36° | | 12x-6x+5=3x-7 | | 8(3y-2)=3(10y-y)+35 | | 36−6(x−1)=14 | | 2(3x+7)=10x+10 | | 2(3x=7)=10x+10 | | 6x-1=20-x | | 24-x=x+4 | | (7x+14)/3-(17-3x)=6x-(4x+2)/3-5 | | 5×(x-3)-12=2x-18 | | 9(6x-5)=63 | | 4,5•y-8=-14+2,5•y | | 9x²-11x-39=0 | | 3(x+2)+5(x+4)=90 | | 24=2(x=3) | | 1(3x+4)=2(4x-1) | | x-30x/100=45.2 | | x-30/100=45.2 | | 2x+4÷6=x÷9 | | 55-14x²+2=0 | | 4x-7=28x-8 | | 4x+35=5(x+5) |