If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-16x-45000=0
a = 3; b = -16; c = -45000;
Δ = b2-4ac
Δ = -162-4·3·(-45000)
Δ = 540256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540256}=\sqrt{16*33766}=\sqrt{16}*\sqrt{33766}=4\sqrt{33766}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{33766}}{2*3}=\frac{16-4\sqrt{33766}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{33766}}{2*3}=\frac{16+4\sqrt{33766}}{6} $
| 15=n | | X=(6x+1) | | 5x+20=-3x-7 | | 1/2(8x+72)+5=-3 | | 20h+100=-h^2 | | 7+2n=8n+5 | | 3x-6x=-8 | | 15y+35=3y | | 6x+7=4x+-11 | | 7×35+10.50d=308 | | 15x^2-49x=0 | | 185+223+x÷3=200 | | 25y=24y—6 | | 6x+-8=4x+10 | | x2-4x+131=180 | | (9+x)*3=69 | | 11t+3=5-9t | | 5x+6x-9x=3+1 | | 9w-47=7(w-9) | | 14+56x-22=8(7x-1) | | G(x)=2×4* | | 0=-2t^2+12t+14 | | 3+9y=-15+6y | | 44g^2-45g+1=0 | | -v/3+.75=(-10) | | -n+8n=85 | | 8x10+5(x-3)=3 | | X=5.09x10^14)x(6.626x10^-34) | | 15h+100=175 | | 92+56÷14-x=100 | | E=(5.09x10^14)x(6.626x10^-34) | | 5x+7=3x+41 |