If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x+7=0
a = 3; b = -18; c = +7;
Δ = b2-4ac
Δ = -182-4·3·7
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{15}}{2*3}=\frac{18-4\sqrt{15}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{15}}{2*3}=\frac{18+4\sqrt{15}}{6} $
| V=3.13(4a)(3a+2) | | 10x+2=5x-4 | | -6x-4(3+8x)=-12(1-12x) | | 42-7x=7(-4-3x) | | n-5/6=-32/3 | | 4u-6=2u | | 175=-20x-35 | | 2x=52+x | | 3(5x-3)-2(5x-12)=2(2x+3)-3 | | 7(-4r-8)=19-3r | | -15-2g+g=1+6g | | Y+1.3x=-2 | | 72n=76 | | 1/3+y=2y-1 | | 0.08^x=0.12 | | 5x+7=-x-13+2x | | (2x+8)/(x+4)=0 | | (x^2-2x-15)/(x+3)=0 | | -25=-5/4u | | 1/12+x/8=x/6 | | b-2.8=9.08 | | 2500=6x+4 | | 8(4k-4=5k-32 | | 9x-18=-45 | | y/9=42/3 | | 16x^2+32x+16=25 | | -3x-4-2x+11=-7 | | X=-5/8y | | 10-4c-7=2(3-2c) | | (4x+11)=(2x+19) | | (4x+11)=(2x=19) | | 7(p+3)=4p+21+3p |