If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x=6
We move all terms to the left:
3x^2-18x-(6)=0
a = 3; b = -18; c = -6;
Δ = b2-4ac
Δ = -182-4·3·(-6)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{11}}{2*3}=\frac{18-6\sqrt{11}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{11}}{2*3}=\frac{18+6\sqrt{11}}{6} $
| 5x4=-x+3 | | 120x+60=131+70x | | -3b+8=25 | | 2+4=-2x-12 | | 2(x+1)+5=15 | | 3(4y-14)+7y=22 | | 3v–15=–18 | | 4181=b-6460 | | x/5=16/1 | | 16t^2-12t=54 | | 36=3/4a-27 | | 5(3m-6)=120 | | 7(210-c)=1.358 | | x−17.1=-4.8 | | 5m-9=3(4m-3) | | 89-7/12s=68 | | 9b=-34 | | -4x-20=2x+10 | | -4x-20=6x+10 | | 12.5+.40e=14.25+.25e | | 6(9k-4)=34 | | (x/2)+(4x/3)=2x-(3/2) | | 29=11/3f-26 | | v-27=6 | | X+x+37+67+90=180 | | 65r=115 | | 6x+42-20=-13+6x+12 | | r-65=115 | | 11x=-33/x=-3 | | 58-4/5q=50 | | 6x-4=8x-32 | | 5x+40+80=180 |