If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-19x-7=0
a = 3; b = -19; c = -7;
Δ = b2-4ac
Δ = -192-4·3·(-7)
Δ = 445
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{445}}{2*3}=\frac{19-\sqrt{445}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{445}}{2*3}=\frac{19+\sqrt{445}}{6} $
| 15x2-18x-3=0 | | 13x2-13x-5=0 | | 8x2-10x-20=0 | | 9x2-6x+18=0 | | 20x2-14x+10=0 | | 5x2+13x-5=0 | | 6x2+2x-16=0 | | 13x2+13x-2=0 | | 2x2-20x+9=0 | | 11x2+11x-1=0 | | 18x2+17x-17=0 | | 10x2+14x+9=0 | | 15x2-9x+3=0 | | 15x-9x+3=0 | | 16x2-3x+17=0 | | 9x2+14x+12=0 | | 11n+11n-1=0 | | 11x2-4x-1=0 | | 14x2-15x-6=0 | | 4x2-2x+11=0 | | 19x2+11x+7=0 | | 18x2+12x-11=0 | | 9x2+4x-5=0 | | 10x2+5x-6=0 | | 8x2-18x-3=0 | | 19x2+6x-3=0 | | 3(5x+8)-7x=6x | | y-18.4=11.3* | | 7y+15=2y+55 | | (9t-6)/12-(8t+12)/12=2/3-t | | (7-x)^2=(x+3)^2 | | 1/4-5x-1/8=5-x/6 |