If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-20x+7=0
a = 3; b = -20; c = +7;
Δ = b2-4ac
Δ = -202-4·3·7
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{79}}{2*3}=\frac{20-2\sqrt{79}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{79}}{2*3}=\frac{20+2\sqrt{79}}{6} $
| X(6+8)=x(6+4) | | 14x-8=360 | | 8x-(3+x)=-6+3x+2 | | 6x=4(x+11) | | 15y=3y+24 | | 12m^2+18m=0 | | ((6x-4)*2)+(x*2)=360 | | 2x-4(5x+8)=5 | | -9(x+11)=-126 | | ((4x+5)*2)+(x*2)=360 | | -9(x+11)=126 | | 2n-3=5n-6 | | 73/300=x/100 | | 5(-3y+3)=45 | | (6m-2)+(8m+4)+(10m-20)=180 | | 5x+13+2x+28=90 | | 125/x=5 | | 4(3x+8)=6(2x+12) | | 10-4x=-17.6 | | 5z-18=82 | | 7x=4=54 | | x+2x+(x-4)=48 | | 10-4x=17.6 | | 6(x-3)+10=2(13x-8) | | 3x-11+6x-10+x=180 | | 9x+61=10x+59 | | 4x-12=-3x-9 | | 2x=x+69 | | 2x+6x+4=3x+12 | | 38+2=3y-y | | 4t/t-25=1/5-t | | 3x+7x+9=39 |