If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-20x-14=0
a = 3; b = -20; c = -14;
Δ = b2-4ac
Δ = -202-4·3·(-14)
Δ = 568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{568}=\sqrt{4*142}=\sqrt{4}*\sqrt{142}=2\sqrt{142}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{142}}{2*3}=\frac{20-2\sqrt{142}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{142}}{2*3}=\frac{20+2\sqrt{142}}{6} $
| 2x2+12x-13=0 | | 9x2+3x-5=0 | | 3(7t+5)-2t=4 | | 0.3(5x-7)=3(0.2x-3.2) | | 4(3a)-11=7(2a-5) | | 1x4+4x3-3x2-10x+8=0 | | x4+4x3-3x2-10x+8=0 | | 8x+5=10+3x | | 10x+4=20+5x | | 12x+3=27+6x | | 12x+32=92 | | 3x-12=19x+4 | | -2(m+4)=36 | | 500x0.24=fx0.04 | | 12/2-2y=1/4 | | 7(-2x+4)=-2x | | 360=200+a+(2a-50) | | 12-6w+3(2w+3)=2w+5 | | x2-15x-11=0 | | 20x2-2x-8=0 | | 6x2+4x-14=0 | | 6x2+18x-1=0 | | 17x2+15x-14=0 | | 20x2+15x-10=0 | | 10x2+6x-13=0 | | 11x2+8x+15=0 | | 2x2-9x+18=0 | | 9x2-9x+11=0 | | 2x2-13x+2=0 | | 2x2-8x-8=0 | | 18x2+7x-17=0 | | 8x2-3x-6=0 |