If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-29x+40=0
a = 3; b = -29; c = +40;
Δ = b2-4ac
Δ = -292-4·3·40
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-19}{2*3}=\frac{10}{6} =1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+19}{2*3}=\frac{48}{6} =8 $
| y+1/3=5 | | 8y-5y=-36 | | 128/m=32/5 | | 5(1+4c)-2c=-13 | | y/3+1=5 | | -52+x=84 | | 32/5=128/m | | .5x(x-2)=(.5x+2)(x-3) | | 5x-(2x+14)=1 | | 4/22=18/m | | 2/3(x-2)+1/2(3-x)=1/3 | | x/5+9=-11 | | 16x^2-236x+358=0 | | -133=-3(1-8x)+2x | | 6-5x-2=8x-6-3 | | 125=-7(1+5p)-8 | | 7x-35x^2=0 | | 4(x+8)-7=15 | | -2(5-8v)+12=-54 | | 1/2y+2=1/4y+5 | | (3z/8)-(z/10)=4 | | 12x-3x+5=6x+4x-8 | | -4v-4v=16 | | -2/11r+2r=1/2r+29/2 | | -1÷8d+7=16 | | 3z/8-z/10=4 | | X+4i=O | | 82=2(1+3n)+4n | | y^2-12y+10=0 | | (2+2)(x-2)=(x+3)(x-3) | | 4(x-1)=6x+12 | | 4(2x-3)-3(2+x)=2(x-6 |