If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x-133=0
a = 3; b = -2; c = -133;
Δ = b2-4ac
Δ = -22-4·3·(-133)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-40}{2*3}=\frac{-38}{6} =-6+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+40}{2*3}=\frac{42}{6} =7 $
| 3d-4/6+1=d+1/8 | | 3/16=x/65 | | (X^2-3)(x+1)=0 | | 10-8n=5-8n | | -8y+7=9y+1 | | 9.95-x=10.65 | | 32=54-9y | | 1.5x=2.64 | | 28=27-8y | | 15/(2x)=3/4 | | 10.65+x=9.95 | | 5x-17=189 | | 8x4=12+4x | | 16a+2a+2a=20 | | 10x-6-4=3x+4 | | 2+v/2=16 | | -2-2a=-16+5a | | 21=3/u-13 | | 8+3x=2(−x+4)−30 | | 5(w+3)=9w+7 | | 4x+6+113+90+5x+4x+6=540 | | 21=u/3-13 | | 2=5u-3 | | -8=-3/2x+11 | | 11=a-4-4a | | 3=((18+n)/44)) | | 2t-t=-26 | | 7x=2+20 | | -9w-9=9 | | 3r2=14r-8 | | 5x+2-2(x+1)=3x+4 | | 8w+6-9w-9=9 |